#author("2020-01-20T11:29:48+09:00","default:kouzouken","kouzouken") #author("2020-01-20T11:30:35+09:00","default:kouzouken","kouzouken") #contents *平等強さの棒 [#rdc79d3a] -http://www.loid.co.jp/html/rev/5th_day.html ${\displaystyle A_{x}=A_{0}e^{\frac{\gamma}{\sigma}x}}$が正解でいいようなので、 題意から$\sigma=\frac{P}{A_{0}}$が成り立つなら、 ${\displaystyle A_{x}=A_{0}e^{\frac{A_{0}\gamma}{P}x}}$ \[ A_{x}=A_{0}e^{\frac{A_{0}\gamma}{P}x}\] ${\displaystyle U=\int_{0}^{\ell}\frac{\sigma^{2}}{2E}A_{x}dx \[ U=\int_{0}^{\ell}\frac{\sigma^{2}}{2E}A_{x}dx =\int_{0}^{\ell}\frac{P^{2}}{2EA_{0}^{2}} A_{0}e^{\frac{A_{0}\gamma}{P}x}dx }$ \]